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Abstract 

Philosophers of mathematics commonly distinguish between 
explanatory and non-explanatory proofs. An important subclass of 
mathematical proofs are proofs by induction. Are they 
explanatory? This paper addresses the question, based on general 
principles about explanation. First, a recent argument for a 
negative answer is discussed and rebutted. Second, a case is made 
for a qualified positive take on the issue. 

 
In the philosophy of mathematics it is commonplace to distinguish between explanatory 
and non-explanatory proofs. The former explain why their conclusion is true, while the 
latter merely show that their conclusion is true.1 An important subclass of mathematical 
proofs are proofs by induction. However, intuitions are divided about which of them, if 
any, are explanatory.2 This suggests that direct reliance on intuitions is a poor guide for 
deciding the question. An argument from more general principles about explanation is 
needed. This paper addresses the issue of whether there are principled reasons for giving a 
positive or negative answer to the question of the explanatory power of inductive proofs. 

In a recent paper, Marc Lange (2009) argues for a general negative take on the 
explanatory power of inductive proofs: according to him, no inductive proof is 
explanatory. Lange claims that his argument presupposes very little about mathematical 
explanations—in essence, only that they cannot run in a circle. His argument, if sound, 
would be very illuminating, since it would break the tie between conflicting intuitions. 
However, in section 1 we argue that Lange’s argument fails. We show that it has to rely on 
an unacknowledged assumption, namely that universally quantified sentences explain their 
instances. Further, we argue that this assumption is false.   

In section 2 we use the resources developed in our critique of Lange’s argument to 
build a qualified positive case for the explanatory power of inductive proofs. Although 
intricate issues would have to be decided in order to give a straightforward positive 
answer, we argue that at least a weaker claim is supported by general principles about 
explanation. Roughly, inductive proofs are recipes for generating explanatory proofs of 
everything that explains their conclusion. 

                                                        
1  See, e.g., Bolzano (2004: §§13, 14), Kitcher (1975: 254), Steiner (1978: 135), and Mancosu 

(2001: 98f.). 
2  Some authors assume that inductive proofs are typically explanatory, e.g. Kitcher (1975: 

265) and Brown (1997: 177), while others assume that they are generally not explanatory, 
e.g. Hanna (1990: 10) and Hafner and Mancosu (2005: 237). 
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1. Against Lange 

a. Lange’s Main Argument 

In this section, we argue that Lange misses his goal of ending the ‘fruitless exchange of 
intuitions’ (Lange 2009: 205) amongst participants in the debate over the explanatory 
power of inductive proofs. Our argument proceeds in three steps. First, we point out that 
Lange underplays the assumptions on which his argument rests. In addition to the 
asymmetry of mathematical explanation, Lange has to appeal to a further principle which 
links universally quantified truths and their instances. Secondly, we show that, once the 
most straightforward candidate principle is in place, a much simpler argument for the 
explanatory impotence of proofs by induction becomes available. Finally, we argue that 
this is cold comfort for the opponent of inductive explanations, since the needed principle 
is false. 

Let us begin with some stage setting. A proof by mathematical induction is a deduction 
of a conclusion of the form ‘∀nF(n)’ that relies on the corresponding instance of the 
following schema:  

INDUCTION SCHEMA  
[F(1) & ∀n (F(n) → F(n+1))] → ∀n F(n)  

In such a proof, we first show that the number 1 has a certain property and that, if some 
number has that property, its successor does as well.3 Reliance on the relevant instance of 
the Induction Schema then allows us to derive the universal claim that every number has 
the property in question. Now consider the following variation on the Induction Schema: 

UPWARDS AND DOWNWARDS FROM 5 SCHEMA  
[F(5) & ∀n (F(n) → F(n+1)) & ∀n (F(n+1) → F(n))] → ∀n F(n)  

A 5-proof is a deduction of a conclusion of the form ‘∀nF(n)’ that relies on the 
corresponding instance of the Upwards and Downwards from 5 Schema. In such a proof, 
we first show (i) that the number 5 has a certain property, (ii) that, if some number has that 
property, its successor has it, and (iii) that, if some number’s successor has the property, 
the number itself has it. Reliance on the relevant instance of the Upwards and Downwards 
from 5 Schema then allows us to derive the universal claim that every number has the 
property in question.  

Lange can now be seen to argue as follows:4  

THE MAIN ARGUMENT  
P1  If there is an inductive proof to some conclusion C, then there is also a 5-proof of 

C.  
P2  If an inductive proof to the conclusion C is explanatory and there is a 5-proof of C, 

then there is an explanatory 5-proof of C.  

                                                        
3  For the purposes of this paper, we follow Lange in assuming that 1 is the first natural 

number. Nothing hinges on this. 
4  For this and the argument for (P3), cp. Lange (2009: 209f.). 
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P3  An inductive proof and a 5-proof to the same conclusion cannot both be 
explanatory.  

C1  Therefore, no inductive proof is explanatory.  

Clearly, the argument is valid. (P1), though not obviously true, can be proven.5 For the 
sake of argument, we will simply grant (P2) without scrutiny of Lange’s justification.6 Our 
critique will concentrate on (P3). 
 
b. The Assumptions of the Argument 

According to Lange, his argument relies only on the following constraints on explanations 
in mathematics:7  

EXPLANATION  A proof is only explanatory if each of its premisses at least partially 
explains its conclusion;  

ASYMMETRY  If x at least partially explains y, y does not even partially explain x.  

Lange (2009: 207) justifies Asymmetry with the help of two further principles: 

IRREFLEXIVITY Nothing explains itself (not even partially).  

TRANSITIVITY  If x at least partially explains y, and y at least partially explains z, 
then x at least partially explains z.  

This is noteworthy because—as we will show later—Transitivity plays an independent 
role in the course of the argument. 

Explanation seems to be merely an agreement about our use of the term ‘explanatory’ 
as applied to proofs. Asymmetry and Transitivity are plausible general principles at least 
with respect to mathematical explanation.8 But Lange’s contention that his argument uses 
only these principles is incorrect. To see this consider his justification for (P3):  

                                                        
5  Sketch: (P1) is true, if the Induction Schema is provable from the Upwards and Downwards 

from 5 Schema in conjunction with the other Peano axioms. And so it is. Suppose that F(1) 
& ∀n(F(n) → F(n+1)). Let G(n) ↔def ∀m(m ≤ n → F(m)). Then it is easy to show with the 
help of the Upwards and Downwards from 5 Schema that ∀nG(n), from which it follows 
that ∀nF(n). Thanks to NN for pointing the proof out to us. 

6 Baker (2010) argues that Lange’s justification for (P2) is ‘too quick’ by pointing out a 
difference between inductive proofs and 5-proofs—what he calls minimality—which Lange 
has not shown not to be explanatorily relevant. However, Baker’s conclusion is rather 
weak. If the argument in this section goes through, it points not merely to an oversight in 
the original argument but to a principled reason why Lange’s argumentative strategy fails. 

7  Cp. Lange (2009: 206f.). 
8  Neither Asymmetry nor Transitivity is above suspicion, though. For challenges to 

Transitivity for causal explanations see e.g. Hesslow (1981) and Owens (1992: 15ff.). For a 
detailed discussion of Asymmetry see [author’s paper].  
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THE ARGUMENT FOR (P3)  
P4  If an inductive proof to the conclusion that ∀nF(n) is explanatory, its premiss that 

F(1) partially explains why F(5).9 
P5  If a 5-proof to the conclusion that ∀nF(n) is explanatory, its premiss that F(5) 

partially explains why F(1). 
C2  Therefore, (P3): an inductive proof and a 5-proof to the same conclusion cannot 

both be explanatory. 

(C2) follows from (P4) and (P5) by Asymmetry. But why should we believe (P4) and (P5)? 
Any satisfactory justification for either of them will carry over, mutatis mutandis, to the 
other. So, let us take a closer look at Lange’s justification for (P4):  

L1 [I]f the argument from mathematical induction uses F(1) to explain why 
it is the case that for any n, F(n), then for any n ≠ 1, the argument uses 
F(1) to explain why F(n) is true—and so, in particular, uses F(1) to 
explain why F(5) is true. (Lange 2009: 210) 

Given Lange’s contention one should expect the claim just quoted to be warranted by 
Explanation (since Asymmetry is clearly irrelevant here). But Explanation tells us only that 
the premisses of an explanatory proof explain its conclusion: a universal claim—not one 
of its instances. Of course, given Explanation and Transitivity, anything explained by the 
conclusion of an explanatory proof will in turn be explained by the proof’s premisses. But 
for this consideration to be pertinent a further principle is needed. While Lange does not 
make it explicit, the following quotation hints at what he may have had in mind:  

L2 In explaining why for any λ and r, E = 2λ/r, Coulomb’s law explains in 
particular why E = 4 dyn/statcoulomb if λ = 10 statcoulombs/cm and r = 
5cm. By the same token, if F(1) explains why for any n, F(n), then F(1) 
explains in particular why F(5). (Lange 2009: 210)  

Here, Lange seems to take the general truth that, for all λ and r, E = 2λ/r to explain the 
particular instance cited. This suggests that he relies on the following contention:  

CASE-BY-RULE A universally quantified truth explains its instances.  

Case-By-Rule would close the gap in his argument. For, suppose that the proposition that 
F(1) explains why ∀nF(n). Since the proposition that ∀nF(n) explains—by Case-By-
Rule—why F(5), Transitivity yields that the proposition that F(1) also explains why F(5).  

But while Lange’s argument thus goes through, it now appears to be unnecessarily 
convoluted. We can get to its conclusion by a much shorter route:  

THE DIRECT ARGUMENT  
P6 If some inductive proof is explanatory, then—by Explanation—its premiss that 

F(1) partially explains its conclusion that ∀nF(n). 

                                                        
9  For present purposes we follow Lange in taking ‘F(1)’ to be a premiss of an inductive 

proof. We discuss this issue at the beginning of section II. 
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P7 Given Case-By-Rule, no instance I of a universal statement U can (partially) 
explain U, since I would also be explained by U, in violation of Asymmetry. 

C1 Therefore, no inductive proof is explanatory.   

We have seen that Lange’s argument has to rely on an unacknowledged constraint on 
explanation. The most straightforward candidate, Case-By-Rule, would validate his 
argument, but at the cost of making the bulk of it superfluous.. 

 
c. Alternatives to Case-By-Rule? 

Perhaps, then, Lange should not be read as relying on Case-By-Rule. Indeed, in a recent 
paper Lange comments on his original argument: it is not, he writes, based ‘on the premiss 
that if a fact helps to explain a given universal generalization, then it must help to explain 
every instance of that generalization’ (Lange 2010: fn. 15).10 So, there is a strong reason 
not to ascribe Case-By-Rule to Lange. However, he fails to mention which other principle 
his argument is supposed to rely on. Since this is the crucial question for evaluating the 
argument, some further speculation is appropriate.  

The beginning of quotation L1 supports the conjecture that Lange merely has a 
restricted version of Case-By-Rule in mind:  

RESTRICTED CASE-BY-RULE  A universally quantified truth explains its instances, 
except those that explain it.  

Restricted Case-By-Rule certainly looks peculiar. If the principle is true, there is 
always an explanatory relationship between a universally quantified truth and any of its 
instances: either the former explains the latter or the latter explains the former. It is hard to 
see what could motivate such a principle without also motivating that the direction of the 
explanatory relation is uniform, i.e. without either motivating Case-By-Rule or  

RULE-BY-CASE  A universally quantified truth is explained by its instances.  

However, on the one hand, the restriction of Restricted Case-By-Rule is redundant once 
we have Case-By-Rule, while, on the other, Rule-By-Case would undermine Lange’s 
argument. 

But suppose for the sake of argument that Restricted Case-By-Rule can be indepen-
dently motivated. While we cannot run The Direct Argument with Restricted Case-By-
Rule in place of Case-By-Rule, Lange’s original argument will not go through either. In 
The Argument for (P3), Lange has to assume, for reductio, that both the inductive proof of 
the conclusion that ∀nF(n) and the 5-proof of the same conclusion are explanatory. By 
Explanation, both the proposition that F(1) and the proposition that F(5) explain why 
∀nF(n). But then, Restricted Case-By-Rule neither allows us to conclude that the 
proposition that ∀nF(n) explains why F(5), nor to conclude that it explains why F(1). 
Thus, we cannot use Transitivity and Asymmetry to derive a contradiction. 

So, we are still in search of the missing link in Lange’s argument. As a last resort, 
consider the suggestion that Case-By-Rule should not be restricted with respect to the 

                                                        
10  Thanks to [blinded] for the reference. 
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instances of a universal generalisation it applies to but with respect to the universal 
generalisations themselves. Perhaps not all universal generalisations explain their 
instances but only those with a certain feature. Recall that in the example in L2 it is 
Coulomb’s Law that allegedly explains its instances. This points towards an influential 
tradition in the philosophy of science. On Hempel’s account, for instance, any explanation 
must involve a law, where laws are taken to be universally quantified truths.11 Although 
nothing in Hempel’s account would commit its proponent to accepting anything as general 
as Case-By-Rule or as peculiar as Restricted Case-By-Rule, it has the following 
consequence:  

CASE-BY-LAW  A universally quantified truth which is a law explains its instances.  

Contrary to Restricted Case-By-Rule, Case-By-Law is of some help in Lange’s 
argument. For, suppose that the conclusion U of an inductive proof is a mathematical law. 
Then, by Case-By-Law, U explains all of its instances. By Explanation and Transitivity, 
the premisses of the inductive proof would explain all of U’s instances if the proof were 
explanatory. The same goes, mutatis mutandis, for 5-proofs. Thus, Case-By-Law would be 
able to sustain the argument for an important class of inductive proofs: those whose 
conclusions are mathematical laws. 

However, our praise of Case-By-Law already points to its weakness. In order for it to 
support an argument to the effect that no inductive proof is explanatory, it would have to 
be shown that all universal generalisations open to inductive proofs are mathematical 
laws. However, this seems rather implausible. What is more, it would be strange for Lange  
to rely on this contention, since he devotes a whole recent paper to the phenomenon of 
mathematical coincidences. Whatever other merits it may have—this will be the topic of 
section e—Case-By-Law is unable to support Lange’s argument in full generality. 

It is easy to see that a combination of Restricted Case-By-Rule and Case-By-Law is 
testament to the fact that two wrongs often don’t make a right but a very wrong. This takes 
us back to Case-By-Rule as the only real candidate for closing the gap in Lange’s 
argument. As we have seen, it would indeed suffice to achieve Lange’s goal, though via a 
much shorter route.12 But how innocent is the assumption on which the argument is built? 

 
d. Evaluating Case-By-Rule 

First of all, an argument resting on Case-By-Rule is certainly ill suited as a quick and easy 
way of settling the dispute about the explanatory power of inductive proofs. For, even if 
the principle may not be obviously false, it is certainly far from uncontroversial. In fact, 
there is good reason to deny it. As a first step, note that it conflicts with Rule-By-Case: 
Take any universally quantified truth U and one of its instances I. Given Case-By-Rule, U 
explains I. Given Rule-By-Case, I explains U. But, by Asymmetry, this cannot both be the 
case. So, if Rule-By-Case is correct, Case-By-Rule is not. 

                                                        
11  See Hempel and Oppenheim (1948). 
12  Incidentally, this shorter route would also be available in those cases where Case-By-Law is 

applicable. 
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We now argue that Rule-By-Case receives strong motivation from independent general 
considerations. In order to do so, we will draw on current work concerning purely formal 
and logical features of explanation. Several authors have recently explored the explanatory 
relationships that hold between sentences solely on the basis of their logical form and the 
nature of the logical constants involved in them. As we will now show, it is fruitful to 
bring their results to bear on the issue at hand. 

Consider a propositional language. There are general principles establishing 
explanatory links between true sentences of such a language solely on the basis of their 
truth-functional structure. Classical truth-functional compounds are true/false because of 
the truth-values of their component sentences. So, for instance, any truth explains any 
truth-functional disjunction of which it is a disjunct, any true conjunction is at least 
partially explained by any of its conjuncts, etc.13 These explanatory relations reflect how 
the truth values of such sentences depend on each other. A similar dependence obtains 
between quantified sentences and their instances. So, we should expect there to be general 
explanatory principles for the quantifiers as well. The obvious candidates for the universal 
quantifier are Case-By-Rule and Rule-By-Case. 

But which of the two is correct? We can take a hint from the truth-functional case. 
There is a close connection between universal quantification and conjunction. Restricting 
ourselves to finite domains and assuming a reasonably rich language, a universal 
quantification will be true just in case the conjunction of its instances is. As we have 
already noted, true conjunctions are explained by their conjuncts. Hence, the conjunction 
of instances of a true universally quantified sentence is partially explained by each of those 
instances. If there is a general explanatory link between quantified sentences and their 
instances at all, it should mirror this link. So, if there is an explanatory link between 
universally quantified truths and their instances, the latter partially explain the former.14 
Consequently, if there is any general explanatory principle for the universal quantifier, it is 
Rule-By-Case. Since we have already argued that it is very plausible that there is such a 
general principle, we should accept Rule-By-Case and deny Case-By-Rule. Not only is the 
latter principle false because it has some false instance, Asymmetry and Rule-By-Case 
imply that it only has false instances. 

In a finitary language there is no analogue of the equivalence between universal 
quantification and conjunction once we consider infinite domains. Thus, the intimate link 
between universal quantifications and conjunction is severed for the simple reason that we 
lack the resources for formulating the relevant conjunction. We do not take this to weaken 
the argument for Rule-By-Case. First, in a sufficiently rich language that allows for infinite 

                                                        
13  Cp. Schnieder (2008; forthcoming), and also Correia (2010), and Fine (2010, forthcoming). 

In their papers, Fine and Correia are concerned with grounding which they take to be an 
explanatory relation expressible by ‘because’-sentences. See Fine (2001: 15f.) and Correia 
(2010: 253f.). 

14  Cp. Fine (forthcoming), and Schnieder (forthcoming). Starting from the equivalence of 
existentially quantified sentences and disjunctions, the same line or reasoning can be used 
to argue that existential generalizations are explained by any of their true instances. Cp. 
Lewis (1986: 223), Fine (2010, forthcoming), and Schnieder (forthcoming). 
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conjunctions, the strong link reemerges.15 Second, given that the finite case is indicative of 
an explanatory link from the instances of a universal quantification to the quantification 
itself, we see no reason to suppose that this link is absent, let alone reversed, in the infinite 
case. As an anonymous reviewer pointed out to us, in the infinite case every instance 
makes only an infinitesimal contribution to the truth of the universal statement. 
Nevertheless, an infinitesimal contribution is a contribution; and we see no harm in 
countenancing cases where an infinite number of instances each partially explain the 
corresponding universal statement. 
e. Explanation by Laws 

We anticipate the following objection. We have already noted (in section c) that an 
influential tradition in the philosophy of science accepts a position that, together with the 
assumption that laws are universal quantifications, implies a restriction of Case-By-Rule to 
universal generalisations that are laws (Case-By-Law). Thus, philosophers working in this 
tradition might balk at the reason we gave for denying Case-By-Rule. For, Case-By-Law 
and the assumption that laws are universal quantifications entail that some universal 
generalisations (namely laws) explain their instances. But this in turn implies—given 
Asymmetry—that Rule-By-Case is false. 

We have strong sympathies with the intuition underlying the current objection, namely 
that laws explain their instances. On the other hand, we take the case for Rule-By-Case—
which seems to be in direct conflict with the intuition—to be compelling. So, something 
has to give. 

As we will now show, there are two reasonable ways of reconciling explanations by 
laws with the acceptance of Rule-By-Case. Firstly, note that the clash between the two 
claims turns on Hempel’s identification of laws with universally quantified truths. If that 
identification is rejected, the apparent conflict disappears. In fact, Hempel’s view has been 
denied by many philosophers in the more recent debate about lawhood.16   

Secondly, even if one sticks to Hempel’s identification, there is a way of reconciling 
Rule-by-Case with the intuition that, sometimes, things can be explained by laws. For, 
when we say that, e.g., Coulomb’s Law explains why the magnitude of a certain electrical 
field is such-and-so, we may convey at least two things (we use ‘u’ as a place-holder for a 
sentence expressing Coulomb’s Law and ‘i’ as a place-holder for a sentence expressing 
one of its instances): 

(1) i because u;  

(2) i because it is a law that u. 

                                                        
15  In fact, logicians such as Peirce, Zermelo and at times Hilbert have introduced the 

quantifiers via infinite conjunctions / disjunctions; for sources and discussion see Moore 
(1980). 

16  See e.g. Armstrong (1983) and Dretske (1977: 262) who both argue that laws should rather 
be conceived of as stating certain relationships between properties; for discussion, see 
Lange (1992). 
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(1) is in direct conflict with Rule-By-Case. On the other hand, nothing about (2) seems to 
rule out the truth of Rule-By-Case. If both (2) and Rule-By-Case are correct then the 
proposition that it is a law that u explains why i, which in turn at least partially explains 
why u. Of course, given Transitivity, the proposition that it is a law that u will also explain 
why u. Consequently, given Asymmetry, the proposition that u cannot also explain why it 
is a law that u. But the latter candidate explanation is squarely implausible in the first 
place. Thus, Rule-By-Case is compatible with one natural understanding of the claim that 
laws explain their instances, while incompatible with another. Given the strong motivation 
for Rule-By-Case, we would attribute any plausibility sentences like (1) may have to their 
close proximity to sentences like (2), in particular to the fact that they both may be 
conveyed by the claim that a particular law explains its instances. 
 
f. Conclusion 

Taking stock, Lange put forward an argument meant to settle the longstanding question of 
whether inductive proofs are explanatory. We showed that his argument has to rely on an 
unacknowledged principle—Case-By-Rule. However, this principle is in conflict with 
another candidate principle linking universally quantified truths and their instances—Rule-
By-Case. But Rule-By-Case receives independent support from general principles 
concerning explanation—in particular, that true conjunctions are explained by their 
conjuncts—, and it withstands scrutiny. Thus, we conclude that Lange’s argument fails. If 
there is anything to be said for or against the explanatory power of inductive proofs, a new 
argument is needed. We take a fresh look in the next section. 

 

2. On the Explanatory Power of Inductive Proofs 

a. Premisses of Inductive Proofs 

In this section we argue for a qualified positive take on the explanatory status of inductive 
proofs. To begin with, we need to address an issue that we have brushed over so far. 
Recall that Explanation says that a proof is only explanatory if each of its premisses at 
least partially explains its conclusion. During our discussion, we followed Lange by 
pretending that inductive proofs have premisses of the form ‘F(1)’ (the inductive basis) 
and ‘∀n(F(n)→F(n+1))’ (the inductive step). With Explanation we concluded that an 
inductive proof is only explanatory if the basis as well as the inductive step partially 
explain its conclusion. However, no inductive proof you are likely to find in a mathematics 
textbook (or anywhere else, for that matter) has the basis and the inductive step as genuine 
premisses. Rather, the basis and the inductive step are typically themselves proved in the 
course of a proof by mathematical induction (only if one of them is self-evidently true, 
such a proof is omitted). Thus, whether a particular inductive proof is explanatory will also 
depend on what goes on before the Induction Schema is applied. 

Consider for instance the following caricature of an inductive proof: 
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SUCCESSOR 
Premiss:  Every natural number has a successor.  
Proof of Inductive basis: Thus, by universal instantiation, (i) the number one has a 

successor.  
Proof of Inductive Step:  Further, by conditional proof, (ii) if some number has a 

successor, so does its successor.  
Induction:  Consequently, by an application of modus ponens on the 

conjunction of (i) and (ii) and the relevant instance of the 
Induction Schema, every natural number has a successor. 

Clearly, this proof is not explanatory. In fact, our principles about explanation entail that is 
not. By Explanation, Successor is only explanatory if its premiss (that every natural 
number has a successor) at least partially explains its conclusion (the very same 
proposition). But this is ruled out by Asymmetry. In consequence, there is no hope for the 
general thesis that every inductive proof is explanatory. 

However, our principles also show that, in Successor, something has gone wrong 
before we applied the Induction Schema. For, consider the subproof which establishes the 
inductive basis, i.e. the subproof that has 

(3) Every natural number has a successor; 

as a premiss and 

(4) The number one has a successor; 

as a conclusion. Clearly, this subproof is already not explanatory. By Explanation, the 
subproof is explanatory only if (3) at least partially explains (4). But Rule-By-Case entails 
that (4) at least partially explains (3). Thus, by Asymmetry, (3) does not even partially 
explain (4). What is wrong with Successor has nothing in particular to do with the 
application of the Induction Schema. 

This suggests that a more limited question may still receive a positive answer, namely 
the question of whether those inductive proofs are explanatory whose subproofs of the 
basis and the inductive step are explanatory. Put differently: does the application of the 
Induction Schema preserve explanatory power? This is the question to which we now turn.  

 
b. On the Explanatory Potential of the Induction Schema 

We will argue that the answer in part depends on which form inductive proofs have. (i) If 
we conceive of them as proofs by modus ponens from the conjunction F(1) & 
∀n(F(n)→F(n+1)) of the inductive basis and the inductive step, and the relevant instance 
[F(1) & ∀n(F(n)→F(n+1))]→∀nF(n) of the induction schema to the conclusion ∀nF(n), 
then inductive proofs are in general not explanatory. (ii) We might treat the induction 
schema rather as a kind of inference rule, which allows the move from the inductive basis 
F(1) and the inductive step ∀n(F(n)→F(n+1)) to the conclusion ∀nF(n). Whether 
inductive proofs in this sense are explanatory will depend on highly intricate matters that 
cannot be settled here. (iii) However, even if inductive proofs in this second sense also 
turn out not to be explanatory, we will argue that a strong explanatory tie can still be 
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established between inductive basis and step on the one hand, and the conclusion of an 
inductive proof on the other hand: given an explanation of the basis and the step, we are in 
a position to know of each instance that partially explains the inductive conclusion not 
merely that it holds, but why it holds. (Note that, following common practice in 
epistemology, we distinguish between knowing and being in a position to know which is a 
weaker condition.) 

Re (i): Suppose that explanatory proofs have been given for both the inductive basis 
F(1) and the inductive step ∀n(F(n)→F(n+1)), and that we go on to derive the 
conjunction F(1) & ∀n(F(n)→F(n+1)). Since a true conjunction is (at least partially) 
explained by any of its conjuncts, this constitutes an explanatory proof of the conjunction. 
Suppose that we now add the relevant instance of the induction schema [F(1) & 
∀n(F(n)→F(n+1))]→∀nF(n) and derive its consequent ∀nF(n) via modus ponens. By 
Explanation, the resulting proof of ∀nF(n) is explanatory only if both the conjunction and 
the instance of the induction schema at least partially explain the conclusion ∀nF(n). But 
it is in general not the case that a truth-functional conditional (even partially) explains its 
consequent. On the contrary, any truth Q explains any conditional P→Q of which it is the 
consequent. For, a truth-functional conditional P→Q is not only logically equivalent to the 
disjunction ¬P ∨ Q, but should have the same grounds.17 But it was already acknowledged 
that a disjunction is explained by a true disjunct. Hence, the instance of the induction 
schema cannot explain the conclusion of the inductive proof. By Explanation—the 
principle that the premisses of an explanatory proof explain its conclusion—the inductive 
proof cannot be explanatory. This holds quite generally: if we take an instance of the 
induction schema to be a proper premiss of the respective proof, such a proof will never be 
explanatory. 

Re (ii): What, then, if we do not consider an instance of the induction schema to be a 
proper premiss of the respective proof by induction? Rather, we could think of a proof by 
induction to the effect that ∀nF(n) as resting solely on the inductive basis F(1) and the 
inductive step ∀n(F(n)→F(n+1)), where the induction schema merely licences the move 
to the conclusion ∀nF(n) (think of the schema as a rule of inference). By Explanation, the 
resulting proof of ∀nF(n) is explanatory only if both F(1) and ∀n(F(n)→F(n+1)) at least 
partially explain the conclusion ∀nF(n). Rule-By-Case tells us that with respect to the 
inductive basis F(1), this is indeed the case. But what about the inductive step 
∀n(F(n)→F(n+1))? The principles introduced so far are silent on this matter, for they tell 
us nothing about the explanatory relationship between two universally quantified 
statements. Given that every number is F, is every number F because every successor of 
an F is itself an F? We take this general principle to be dubious, but the matter cannot be 

                                                        
17  Cp. Schnieder (2008, forthcoming), Correia (2010), Fine (forthcoming). This consideration 

applies only to the natural language connective ‘if … then’ if its truth-functional analysis is 
correct, which may well be doubted. But in the present context, only the truth-functional 
arrow is relevant. 
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settled here.18 It would require deciding intricate questions about the explanatory 
relationships between quantified statements that are beyond the scope of this paper.  

Re (iii): According to Rule-By-Case, a universally quantified truth is explained by its 
instances. Let us call the set of instances of a universally quantified truth U the immediate 
explanatory basis of U (BU). Every element of BU partially explains U. It is a further 
question whether all the elements of BU taken together also provide a complete explanation 
of U, or whether this requires the addition of a ‘totality fact’, stating e.g. that these are all 
the instances of U.19 We will remain neutral on this issue. 

Now assume we have an inductive proof of a statement U. The corresponding 
inductive basis, i.e. the statement that 1 has a certain property, is one of the members of 
U’s explanatory basis BU. Moreover, the subproof of the inductive step gives us a method 
to derive other members of BU, e.g. that the number 2 has the said property as well. In fact, 
the combination of inductive basis and step yield a recipe which allows us to proof of any 
arbitrary member of BU that it holds. So, the inductive proof as a whole can be seen as 
explanatory in the sense that it puts us in a position to know of every member of the 
explanatory basis BU that it holds. But knowing of every member of BU that it holds puts 
one in a position to know, on the basis of one’s knowledge of Rule-By-Case, why U holds. 

So far, this is a somewhat weak result. Knowing of each member of the explanatory 
basis of a universal statement U that it holds gives us some explanatory knowledge of why 
U holds. But once we acknowledge the general principle Rule-By-Case, this is a kind of 
knowledge we can easily have for any true universal statement, as soon as we know that it 
is true and what its instances are—the explanation is not a deep one. An explanation of 
more satisfactory depth, on the other hand, would enable us to know of each member of 
BU not merely that it holds, but also why it holds. Can inductive proofs put us in such an 
epistemic position?  

We think that if they involve explanatory subproofs of both inductive basis and step, 
they arguably can. Assume, you know not only that every human is mortal, but also why 
every human is mortal. Assume further that you know that Socrates is human. This, it 
seems, puts you in a position to know not merely that Socrates is mortal, but why he is 
mortal. If the intuition underlying this example is sound, it carries over to inductive proofs 
as follows: if you know not merely that F(1), but also why this is the case, and if you also 
know not merely that ∀n(F(n)→F(n+1)), but also why this is the case, then you are in a 
position to know not merely that F(1+1), but also why this is the case. Thus, having an 
explanatory proof of both the inductive basis and of the inductive step puts us in a position 
to know why F(1+1). Correspondingly, knowing why F(1+1) and ∀n(F(n)→F(n+1)) puts 
us in a position to know, not merely that F(1+1+1), but also why this is the case; and so 
on. Having an explanation of the inductive basis and the inductive step in principle 
suffices to know of every element of the explanatory basis of the inductive conclusion why 
it holds. In other words: having an explanation of both the inductive basis and of the 
inductive step puts us in a position to know, for every number n, why F(n). Granted, being 

                                                        
18  Armstrong, however, seems to have as clear an intuition about these cases as about Case-

By-Rule. See Armstrong (1983: 40f.). 
19  See e.g. Armstrong (1997: 198), Fine (2010: 109), and Schaffer (unpublished). 
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in such a position is not quite the same as knowing why ∀nF(n). But everyone in such a 
position has the means to generate explanations of all the grounds that in turn explain 
∀nF(n). Whether or not he thereby knows why ∀nF(n), he possesses important 
explanatory knowledge regarding the inductive conclusion.  

This warrants the ascription of serious explanatory potential to proofs by induction. But 
note again that what we said was restricted to inductive proofs with explanatory subproofs. 
It does not apply, therefore, to inductive proofs involving non-explanatory subproofs of 
basis or step, nor does it bear directly on proofs which lack a proof of the basis. While 
non-explanatory subproofs arguably undermine the explanatory potential of the full proof, 
this may not necessarily be so in the latter case. Let us distinguish two cases in which 
proofs without a proof for their basis may at least appear explanatory. On the one hand, 
there are those proofs whose basis is provable in an explanatory way, though such a proof 
is omitted because it is trivial or self-evident. In such a case the original inductive proof 
may not itself be explanatory, but, given an explanatory proof of the inductive step, it will 
at least be a close relative of an inductive proof with real explanatory potential. On the 
other hand, there may also be proofs whose inductive basis is explanatorily basic in the 
sense that it has no explanation. There cannot be any explanatory proof of something that 
is explanatorily basic. Hence, an inductive proof that employs an explanatorily basic basis 
will not contain any explanatory subproof of the basis. Do such inductive proofs hold 
explanatory potential? We do not see any reason to rule this out, but what we have said so 
far does not settle this question. As stated above, our concern in this section were 
inductive proofs which incorporate explanatory subproofs of inductive basis and step. 
While we have argued that these proofs hold significant explanatory potential, we did not 
claim that these are the only inductive proofs with such a potential. Indeed, our overall 
position is that the question whether inductive proofs are explanatory, in this generality, 
cannot be answered by a simple ‘yes’ or ‘no’. Some of those proofs are, some are not.20 

 
c. Another Look at 5-proofs 

Let us briefly return to Lange’s idea of a 5-proof. We have seen that whenever there is a 
theorem of a universally quantified truth by mathematical induction, there is also a 5-proof 
of the theorem. Lange argued that corresponding proofs of the two sorts cannot both be 
explanatory, but his argument relies on a false principle, Case-By-Rule. Rejecting his 
argument, however, leaves the question of whether such proofs can both be explanatory 
unanswered. But what we have said in the preceding section about inductive proofs 
directly carries over to 5-proofs: if such a proof is given for some theorem U, then the 
proof provides a recipe for reaching each member of the explanatory basis BU. If the proof 

                                                        
20  We do not mean to suggest that nothing more can be said on the topic. On the contrary, our 

discussion indicates that systematic answers to the question under which conditions proofs 
by induction are explanatory will have to focus on the subproofs of basis and inductive 
step, if such there be. As, e.g., Hafner and Mancosu (2005:215f.) stress, mathematical case 
studies will have an important role to play in this connection. This further question is 
beyond the scope of this paper, however. We leave it for future research. 



Explanation By Induction? 

14/17 

moreover establishes its basis and the required inductive steps by explanatory subproofs, 
the proof even seems to yield a recipe for showing of every member of BU why it is true.  

So, we agree with Lange that 5-proofs should in principle have the same explanatory 
potential as proofs by induction. But while Lange concludes that both kinds of proof are 
explanatorily inert, we see no reason to deny that they can both be explanatory. Moreover, 
we have given a reason to attest some such proofs a moderate explanatory potential they 
have in virtue of providing recipes for explanation; this much can be said without deciding 
whether the proofs themselves should be regarded as explanatory, in a sense of 
‘explanatory’ that makes true Explanation—i.e. the principle that says that the premisses 
of an explanatory proof explain its conclusion. That matter is still up for debate. 
 

3. Methodological Remarks: Explanation in Mathematics 

It has been a guiding conviction in our discussion that general principles about explanation 
can be brought to bear on the question of the explanatory power of inductive proofs. 
Certainly, mathematics—just like physics or any other science—has its distinctive subject 
matter.21 While physics is primarily concerned with causal facts, pure mathematics is a 
non-causal business. And while both of them seem to be concerned with objective facts, 
there may also be certain matters of taste, for example, that allow for substantial 
explanations. As a result, explanations in these different fields will have very different 
features. But we do not seem to be trading on an ambiguity when talking about physical, 
mathematical, or even aesthetic explanations. Hence, there must be a common conceptual 
core that unites them—that makes them all cases of explanation. This common core gives 
rise to principles that hold for explanations of any kind, a fortiori for mathematical ones. 

Many share our universalistic stance. In fact, it appears to be a presumption of any 
sustained discussion of mathematical explanation as witnessed by Lange’s appeal to 
Asymmetry. Let us give just three more examples. First, Bernard Bolzano famously argued 
that the foundations of mathematics have to be improved by finding proofs that mirror the 
explanatory order. For that purpose, he developed a covering theory of grounding meant to 
apply to explanations in general.22 More recent discussions follow suit: Paolo Mancosu 
criticises Nagel’s approach to mathematical explanation for making it out to be 
symmetric—which ‘certainly goes against our intuitive conception of explanation’—23 and 
Resnik and Kushner appeal to van Fraassen’s work in the philosophy of science to support 
their view that explanations in mathematics must provide answers to why-questions.24 

We can distinguish two kinds of principles that govern explanation in general: the 
principles of the pure and impure logic of explanation.25 The former deal with the 

                                                        
21  Thanks to NN. 
22  See, e.g., Bolzano (2004), and Bolzano (1837, vol. II, §§198–222) for his general theory of 

grounding.  
23  Mancosu (2000: 104). 
24  Resnik & Kushner (1987: 152). 
25  Cp. Fine (forthcoming: §6). 
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structural limits and interconnections of explanations. They contribute to answering 
questions like: which form can an explanation never take? given certain explanations, 
which other explanations must also hold, and which cannot? Irreflexivity, Transitivity, and 
Asymmetry belong in this category. The latter concern the interplay of explanation and 
purely logical notions. They contribute to answering questions like: given that a statement 
of a certain logical form is true, which other statements (partially) explain it? and which 
are (partially) explained by it? Candidate-principles include the claim that (true) 
conjunctions are explained by their conjuncts as well as Case-By-Rule and Rule-By-Case. 

Principles of both kinds exhibit what has classically been called topic-neutrality: they 
are not concerned with the specific content of the statements involved, but only with their 
logical-explanatory structure. These principles will thus be applicable to any field that 
employs logical and explanatory notions, a fortiori to mathematics. 

 

4. Conclusion 

Our aim in this paper was to throw new light on the explanatory power of mathematical 
proofs by induction. We share two important methodological convictions with Lange. 
First, we agree with him that the question cannot be settled by appeal to controversial 
intuitions concerning mathematical induction. Rather, an answer must flow from general 
principles about explanation. Second, we agree with Lange that the principles at issue are 
not ones about mathematical explanation in particular—they are not concerned with the 
non-logical content of explanans and explanandum. But here our agreement ends. Pace 
Lange, what is relevant are not only general structural principles that belong to the pure 
logic of explanation—principles that completely abstract away from the sentences 
involved. Rather, what is equally crucial are principles from the impure logic of 
explanation, positing explanatory relations between sentences on the basis of their logical 
form, or, to put it in other words, principles about logical explanation. 

The paper has a negative and a positive dimension. First, we rebutted Lange’s 
argument against the explanatory power of inductive proofs. We have shown that his 
argument has to rely on a controversial view about the explanatory relationship between 
universally quantified truths and their instances. According to this principle, Case-By-
Rule, a universal truth explains its instances. We have argued that this principle is false. If 
there is any general explanatory principle linking universal statements and their instances, 
we should expect the instances to (partially) explain the universal truth, not the other way 
around. That is, instead of Case-By-Rule, we should accept Rule-By-Case. Hence, the 
argument put forward by Lange does not establish that proofs by induction are in general 
not explanatory.  

Secondly, we argued that all proofs by induction are explanatory in an admittedly 
rather weak sense: they provide a recipe for generating all the immediate explanatory 
grounds of their conclusion. Thereby, they put us in a position to know each member of 
the explanatory basis of the corresponding universally quantified truth. Moreover, some 
inductive proofs are explanatory in a much stronger sense: given that both inductive basis 
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and step have been proven in an explanatory way, an inductive proof not only puts us in a 
position to prove all those instances that in turn explain the universal statement, it also puts 
us in a position to see why these instances hold. Hence, explanatory proofs of inductive 
basis and step yield explanatory proofs of every member of the universal statement’s 
explanatory basis and thereby the potential for a deeper explanation of the universal 
statement. In this sense, we conclude, such inductive proofs are explanatory. 
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